40,287 research outputs found

    Partial constraint singularities in elastic rods

    Full text link
    We present a unified classical treatment of partially constrained elastic rods. Partial constraints often entail singularities in both shapes and reactions. Our approach encompasses both sleeve and adhesion problems, and provides simple and unambiguous derivations of counterintuitive results in the literature. Relationships between reaction forces and moments, geometry, and adhesion energies follow from the balance of energy during quasistatic motion. We also relate our approach to the balance of material momentum and the concept of a driving traction. The theory is generalizable and can be applied to a wide array of contact, adhesion, gripping, and locomotion problems.Comment: edited tex

    Drastic fall-off of the thermal conductivity for disordered lattices in the limit of weak anharmonic interactions

    Full text link
    We study the thermal conductivity, at fixed positive temperature, of a disordered lattice of harmonic oscillators, weakly coupled to each other through anharmonic potentials. The interaction is controlled by a small parameter ϵ>0\epsilon > 0. We rigorously show, in two slightly different setups, that the conductivity has a non-perturbative origin. This means that it decays to zero faster than any polynomial in ϵ\epsilon as ϵ0\epsilon\rightarrow 0. It is then argued that this result extends to a disordered chain studied by Dhar and Lebowitz, and to a classical spins chain recently investigated by Oganesyan, Pal and Huse.Comment: 21 page

    Some remarks on one-dimensional force-free Vlasov-Maxwell equilibria

    Full text link
    The conditions for the existence of force-free non-relativistic translationally invariant one-dimensional (1D) Vlasov-Maxwell (VM) equilibria are investigated using general properties of the 1D VM equilibrium problem. As has been shown before, the 1D VM equilibrium equations are equivalent to the motion of a pseudo-particle in a conservative pseudo-potential, with the pseudo-potential being proportional to one of the diagonal components of the plasma pressure tensor. The basic equations are here derived in a different way to previous work. Based on this theoretical framework, a necessary condition on the pseudo-potential (plasma pressure) to allow for force-free 1D VM equilibria is formulated. It is shown that linear force-free 1D VM solutions, which so far are the only force-free 1D VM solutions known, correspond to the case where the pseudo-potential is an attractive central potential. A general class of distribution functions leading to central pseudo-potentials is discussed.Comment: Physics of Plasmas, accepte
    corecore